Exercise 76

For what values of r does the function $y=e^{r x}$ satisfy the differential equation $y^{\prime \prime}-4 y^{\prime}+y=0$?

Solution

Differentiate the given function using the chain rule.

$$
\begin{aligned}
y^{\prime} & =\frac{d y}{d x} \\
& =\frac{d}{d x}\left(e^{r x}\right) \\
& =e^{r x} \cdot \frac{d}{d x}(r x) \\
& =e^{r x} \cdot(r) \\
& =r e^{r x}
\end{aligned}
$$

Take another derivative.

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d}{d x}\left(y^{\prime}\right) \\
& =\frac{d}{d x}\left(r e^{r x}\right) \\
& =r e^{r x} \cdot \frac{d}{d x}(r x) \\
& =r e^{r x} \cdot(r) \\
& =r^{2} e^{r x}
\end{aligned}
$$

Now plug these formulas into the differential equation.

$$
\begin{aligned}
y^{\prime \prime}-4 y^{\prime}+y & =\left(r^{2} e^{r x}\right)-4\left(r e^{r x}\right)+\left(e^{r x}\right) \\
& =\left(r^{2}-4 r+1\right) e^{r x}
\end{aligned}
$$

In order for the right side to be zero, the quantity in parentheses must be zero.

$$
\begin{aligned}
r^{2}-4 r+1 & =0 \\
r=\frac{4 \pm \sqrt{16-4}}{2} & =2 \pm \sqrt{3}
\end{aligned}
$$

The values of r are therefore

$$
r=\{2-\sqrt{3}, 2+\sqrt{3}\} .
$$

